Inverse Airfoil Design Utilizing CST Parameterization
نویسندگان
چکیده
An inverse airfoil design process is presented that makes use of the CST parameterization method. The CST method is very powerful in that it can easily represent any airfoil shape within the entire design space of smooth airfoils. This makes it an ideal modeling technique for an inverse design process because accurate airfoil geometry treatment is required. The downfall of some inverse design processes is that they do not accurately handle the leading edge region due to large flow gradients and high curvature distributions. One way to account for this is by representing airfoils with smooth analytic functions, such as the CST method. The inverse airfoil design process presented is based on the relation between pressure residuals and the required airfoil shape change. The pressure residuals give the sign of the normal vector with which to modify the airfoil shape. The CST method is then used as the smoothing algorithm. The inverse design method is simple, accurate, and efficient. It is shown to accurately determine the airfoil geometry in both subsonic and transonic flows. Since this method simply examines pressure distributions to modify the airfoil shape, the flow solver can be kept separate from the inverse design process, allowing any fidelity flow solver to be used.
منابع مشابه
A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology
For aerodynamic modeling and optimization, it is desirable to limit the number of design variables to reduce model complexity and the requirements of the applied optimization scheme. The Class/Shape Transformation (CST) surface parameterization method presented by Kulfan has proven to be particularly useful for this while maintaining a wide range of applications. These include everything from s...
متن کاملOptimization on Airfoil of Vertical Axis Wind Turbine Based on CST Parameterization and NSGA-II Aigorithm
Optimizing the NACA0015 airfoil which is widely applied in small-scale vertical axis wind turbine to make it has a better aerodynamic performance. In the optimization process, using CST parameterization method to perturb the airfoil geometry, the thickness and camber of the airfoil are selected as the constraint, and the value of the maximum tangential force coefficient is chosen as the objecti...
متن کاملMulti Objective Optimization of Transonic Airfoil Using Cst Methodology with General and Evolved Supercritical Class Function
CST method is a powerful parameterization method because of its simplicity, robustness, and its ability to be generalized into various possible shapes of aerodynamic bodies. The geometry from CST itself is mainly determined by the formula of class and shape function. Application of CST to transonic airfoil optimization is still rare and more studies are needed. This work studies the application...
متن کاملAirfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملThe Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils
The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...
متن کامل